

Evaluating fluorescence lifetime technology for identification and characterisation of DUB inhibitors

Rachel McMenamin (Screening Scientist) *MISSION* Therapeutics ELRIG *Drug Discovery* Meeting 2nd - 3rd September 2015

MISSION Therapeutics

- Company started in July 2011
- ► Major funding of £26m
- Financed to develop first-in-class inhibitors of deubiquitylating enzymes (DUBs)
- Core biology in DNA damage response (DDR) and oncology
- Focused on DUB drug discovery platform

© MISSION Therapeutics 2015

Moneta, Babraham Research Campus, Cambridge, UK

MISSION Therapeutics Ltd
<u>http://www.missiontherapeutics.com</u>
@MISSIONTherapeu

The DUB family of enzymes

Attractive targets for drug discovery

- DUBs control every aspect of ubiquitin biology
- Intracellular peptidases: endo-peptidases
- > Approx. 100 DUBs in human cells
- Majority are cysteine peptidases
- Cysteine protease catalytic site:
 - Common catalytic mechanism and similar overall architectures but high degree of divergence; allowing development of drug selectivity
 - Several known cysteine enzyme classes such as cathepsins and caspases where small molecule inhibitors have been developed

DUBs remain an under-exploited target class for drug discovery

Benefits of fluorescence lifetime

TECHNOLOGY	FI	FP	TRF	TR- FRET	FRET	FLT	FCS+ plus	Alpha Screen	SPA	Lead Seeker	ECL	Bio LUMI
Inner filter effect	•			•	•		•		•	•	•	•
Quenching	•	•		•	•	•	•	•			•	•
Autofluroscence	•	•			•		•					
Bk. phosphorescence			•	•						•	•	•
Light scattering	•						•		•			•
Photo bleaching	•						•					
Volume/meniscus	•	•	•					•	•	•		•
Light sensitivity								•				
Molecular size		•					•					
Tracer conc.	•		•				•	•	•	•	•	•
Temp. stability	•						•	•				•
Robustness score	8	4	3	3	3	·)	8	5	4	4	4	7

Comley J, Drug Discovery World, 2003, 91-98

'FLT is in principle the most robust assay format'

ALMAC

mono-exponential

 $A_t = a_1 exp^{(-t/\tau 1)}$ bi-exponential

B 300-

Detector Signal (mV)

20

What is fluorescence lifetime?

> Fluorescence lifetime: average time a fluorophore stays in the

state

Α

ALMAC

30

© MISSION Therapeutics 2015

ameo

iii ttplabtech

xcitation emission decay (lifetime) adiativ ~1-10 ns ground state

excited state

G. Cotton, W. Bowen, R Grundy et al. Fluorescence Lifetime Assays, Drug Discovery World, Fall 2013

Time (ns)

short excitation pulse. For single

equation yields the FLT value (τ)

Typical fluorescence decay curves following a

fluorophores, fitting to a mono-exponential

FLEXYTE[®] DUB assay principle

The FLT FLEXYTE® DUB assay technology utilises a full-length isopeptide-linked ubiquitin substrate labelled with Almac's 9-aminoacridine (9AA) long lifetime fluorophore and incorporating a FLT modulator which reduces the FLT of 9AA in the substrate. Cleavage of scissile isopeptide bond by the DUB is reported through an increase in FLT

The FLEXYTE® assay technology was compared to MISSION's standard fluorescence polarisation (FP) screening assays

G. Cotton, W. Bowen, R Grundy et al. Fluorescence Lifetime Assays, Drug Discovery World, Fall 2013

© *MISSION* Therapeutics 2015

MISS

Developing FLT assays for DUBs

► USP4, USP6, USP7 and OTUD7B were profiled in the FLT assay

Comparison of DUB activities in FLT assays

USP6 activity over time, measured by change in FLT

Detection of false positives

> Compounds that were quenchers, insoluble or fluorescent were easily identifiable in FLT assay

Profile of an insoluble compound

ALMAC

Plate map showing insoluble compounds in a SPS

Correlation of 10 compounds profiled in USP6 assay

FLT single point library screen

2400 compounds were tested for % inhibition at 100µM in the USP7 FLT assay
139 compounds were identified as insoluble; 4 were quenchers

Comparison of FLT and FP IC₅₀

20 compounds from the USP7 SPS FLT assay were retested to measure IC₅₀ and compared to FP result

Test compound (µM)

ALMAC

IC₅₀ curves for a test compound in USP7 FLT and FP assays

FLT IC₅₀ (μM)

Correlation of USP7 FLT and FP IC₅₀ assays for 20 compounds

Conclusions

FLT reader technology can be used with FLEXYTE[®] substrates to create DUB activity assays for high throughput screening

- The assay technology allows for detection of fluorescence, quenching and solubility related false positives in screening sets
- In a library screen FLT detected a similar number of hits when compared to a FP assay, but also flagged some false positives and false negatives
- FLT is an alternative technology to traditional fluorescence based assays with the advantage of up front removal of a number of common types of false positives and could help streamline drug discovery cascades

Acknowledgements

iii ttplabtech

Uliana Bashtanova Wayne Bowen

Colin Dunsmore

Lisa Smith Xavier Jacq