Quantitative Measurement of Anti-D Antibody in Human Serum Using a Flow Cytometry PK Method

Dr C. de COUPADE
Head of Cell Biology Lab
LFB Biotechnologie (France)
Sensitization to Rh D antigens may lead to the production of maternal IgG anti-D antibodies which can pass through the placenta.

The mother often receives an injection of anti-D antibodies at 28 weeks gestation and at birth to avoid the development of antibodies.
Background (II): Prevention of HDN

- Polyclonal anti-D antibodies purified from human plasma to prevent hemolytic disease of the fetus and newborn
 - Rhophylac® (CSL Behring GmbH)
 - RhoGAM® (Kedrion)
 - WinRHO® (Cangene/Baxter)

- Anticipate potential shortage due to donors aging + avoid volunteers immunization
 => get an alternative to current treatment
 => secure anti-D supply
  replacement therapy

⇒ Risk on Sourcing : BIOHAZARD + DONORS decline
Anti-D: Needs an Alternative to Plasma Derived Products

- Fully human recombinant anti-D antibody developed by LFB (IgG1)

- Variable human region binds specifically to D antigens on red blood cells
- Human constant k-regions
- Human IgG1 Fc region

Advantages of non plasma derived anti-D:

- No infectious hazards
- No repeated immunization of volunteers
- No limitation in supplies

- Phase I ✓
- Phase IIa ✓
- Phase IIb In Progress
Assessment of pharmacokinetic profile of monoclonal anti-D antibody

1. Develop the BioAssay
2. Validate the BioAssay
3. Run the BioAssay

R&D
Validated method for clinical trials
Step 1 Develop the BioAssay

- Development of a ligand-binding assay (ELISA)
 - Soluble D antigen not available
 - Conformational epitope

- Alternatives
 - Murine anti-idiotype antibody for ELISA format
 - Cell-based assay => binding to target cells
A flow cytometry method was developed at LFB to quantify anti-D antibodies in human serum.
Principle

- Binding of anti-D to Red Blood Cells (group OR1R1)
 - O blood group to avoid isoagglutinin interference (anti-A/anti-B hemagglutinins from human serum)
 - R1R1 phenotype selected due to high RhD antigens/cell
- Detection of immune complexes using a fluorescent marker

![Diagram of Cytometry method applied to anti-D determination (I)]
Material

- Flow cytometer (one laser-based cytometer) with high-throughput sample loader

Reagents

- O RhD-positive red blood cells (cryoconserved, stored at +4°C in Alsever solution for 15 days after thawing)
- Reference standard for monoclonal anti-D: LFB internal control used for calibration curve and QCs samples
- Fluorescent-labeled secondary antibody Fab fragment anti-human IgG(H+L)
Red Blood Cell Preparation: Optimization step

=> Treatment of red cells by papain allows better detection of the Rh system on the cell surface by reducing the negative charges and polypeptid chains.

- Increased reactivity of RhD antigen to anti-D antibody leading to an increased response (fluorescence intensity)
- Decreased background due to the serum matrix
Cytometry method: Operating procedure

- **Calibration Standards/ QCs samples**
 - 8 concentration levels (0.5 to 7.5 ng/mL) in 1% PBS-BSA
 - 3 QCs levels (High, Mid and Low)

- **Quantification and adjustment of RBC concentration**
 - Flow Count beads used for direct quantification of RBC/mL

- **Incubation** of RBC with samples (diluted 1 in 2 in 1% PBS-BSA)
 - in a microplate at 37°C for 2h shaking
 - washings in 1% PBS-BSA

- **Addition of the fluorescent antibody**
 - at room temperature for 30 mn
 - washings in 1% PBS-BSA

- **Reading** of the microplate directly on a Flow cytometer
RBC gated on C (50,000 events) to allow good measurement of the fluorescence (MFI - gate A)

Data processing

- Signals processed using flow cytometer and Microsoft Excel softwares to give a Mean Fluorescence Intensity

Acceptance criteria

- Slope must be > 10
- $R^2 > 0.99$
50,000 events/well => reading time around 1h

Minimize decrease of fluorescence over time => Triplicate over the plate

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>QC1</td>
<td>C1</td>
<td>QC1</td>
<td>C1</td>
<td>QC1</td>
<td>C1</td>
<td>QC1</td>
<td>C1</td>
<td>QC1</td>
<td>C1</td>
<td>QC1</td>
</tr>
<tr>
<td>C2</td>
<td>QC2</td>
<td>C2</td>
<td>QC2</td>
<td>C2</td>
<td>QC2</td>
<td>C2</td>
<td>QC2</td>
<td>C2</td>
<td>QC2</td>
<td>C2</td>
<td>QC2</td>
</tr>
<tr>
<td>C3</td>
<td>QC3</td>
<td>C3</td>
<td>QC3</td>
<td>C3</td>
<td>QC3</td>
<td>C3</td>
<td>QC3</td>
<td>C3</td>
<td>QC3</td>
<td>C3</td>
<td>QC3</td>
</tr>
<tr>
<td>C4</td>
<td>QC4</td>
<td>C4</td>
<td>QC4</td>
<td>C4</td>
<td>QC4</td>
<td>C4</td>
<td>QC4</td>
<td>C4</td>
<td>QC4</td>
<td>C4</td>
<td>QC4</td>
</tr>
<tr>
<td>C5</td>
<td>Blk</td>
<td>C5</td>
<td>Blk</td>
<td>C5</td>
<td>Blk</td>
<td>C5</td>
<td>Blk</td>
<td>C5</td>
<td>Blk</td>
<td>C5</td>
<td>Blk</td>
</tr>
<tr>
<td>C6</td>
<td>QC1</td>
<td>C6</td>
<td>QC1</td>
<td>C6</td>
<td>QC1</td>
<td>C6</td>
<td>QC1</td>
<td>C6</td>
<td>QC1</td>
<td>C6</td>
<td>QC1</td>
</tr>
<tr>
<td>C7</td>
<td>QC2</td>
<td>C7</td>
<td>QC2</td>
<td>C7</td>
<td>QC2</td>
<td>C7</td>
<td>QC2</td>
<td>C7</td>
<td>QC2</td>
<td>C7</td>
<td>QC2</td>
</tr>
<tr>
<td>C8</td>
<td>QC3</td>
<td>C8</td>
<td>QC3</td>
<td>C8</td>
<td>QC3</td>
<td>C8</td>
<td>QC3</td>
<td>C8</td>
<td>QC3</td>
<td>C8</td>
<td>QC3</td>
</tr>
</tbody>
</table>

Triplicate
Flow cytometry

Step 2 Validate the BioAssay

Assay Validation of a Flow cytometry PK method for the measurement of anti-D antibodies in human serum

=> The Flow cytometry-based assay was validated according to EMA (Feb 2012) and FDA (May 2011) Guidelines on Bioanalytical Method Validation
Validation Parameters

- Calibration model suitability
- QC Precision, Accuracy and Total error
- Dilution Linearity in buffer
- Stability studies

Instrument set-up: Beckman Coulter FC500 MPL flow cytometer equipped with dual laser system; 488 nm argon laser and 635 nm diode laser
Calibration model suitability

- CV ≤ 20% for all concentration levels
- RE ± 20% (± 25% LLOQ and ULOQ)
- Standard curve must contain a minimum of 6 standards within the quantification range

<table>
<thead>
<tr>
<th>Calibration curve data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration (ng/ml)</td>
</tr>
<tr>
<td>Rep 1</td>
</tr>
<tr>
<td>7.50</td>
</tr>
<tr>
<td>6.00</td>
</tr>
<tr>
<td>4.00</td>
</tr>
<tr>
<td>3.00</td>
</tr>
<tr>
<td>2.00</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>0.50</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

- R² > 0.99
- Slope > 10
QC Precision, Accuracy and Total error

- CV of triplicate ≤ 20%
- RE ± 20% (± 25% LLOQ and ULOQ)

<table>
<thead>
<tr>
<th>QC sample (ng/mL)</th>
<th>Mean Fluorescence Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ULOQ QC 1) 15.0</td>
<td>250</td>
</tr>
<tr>
<td>(High QC 1) 12.0</td>
<td>200</td>
</tr>
<tr>
<td>(Mid QC 1) 5.0</td>
<td>150</td>
</tr>
<tr>
<td>(Low QC 1) 2.5</td>
<td>100</td>
</tr>
<tr>
<td>(LLOQ QC 1) 1.0</td>
<td>50</td>
</tr>
</tbody>
</table>

\[
y = 26.16x + 24.34 \\
R^2 = 0.9920
\]
Linearity, Precision and Accuracy

- **5 QC levels (LLOQ up to ULOQ)**
- **6 independent runs**

<table>
<thead>
<tr>
<th>Assay Run number</th>
<th>LLOQ (1.00 ng/mL)</th>
<th>Low QC (2.50 ng/mL)</th>
<th>Middle QC (5.00 ng/mL)</th>
<th>High QC (12.00 ng/mL)</th>
<th>ULOQ (15.00 ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.94</td>
<td>2.95</td>
<td>5.76</td>
<td>13.00</td>
<td>15.92</td>
</tr>
<tr>
<td>3</td>
<td>1.12</td>
<td>2.68</td>
<td>5.25</td>
<td>12.46</td>
<td>15.31</td>
</tr>
<tr>
<td>5</td>
<td>1.10</td>
<td>2.90</td>
<td>5.85</td>
<td>13.69</td>
<td>16.74</td>
</tr>
<tr>
<td>6</td>
<td>1.12</td>
<td>2.46</td>
<td>4.80</td>
<td>11.63</td>
<td>14.52</td>
</tr>
<tr>
<td>7</td>
<td>1.05</td>
<td>2.60</td>
<td>5.22</td>
<td>12.40</td>
<td>15.16</td>
</tr>
<tr>
<td>8</td>
<td>0.90</td>
<td>2.38</td>
<td>4.72</td>
<td>11.55</td>
<td>13.96</td>
</tr>
</tbody>
</table>

Mean	1.04	2.66	5.27	12.46	15.27
SD	0.10	0.23	0.47	0.82	0.99
CV (%)	9.4	8.6	8.9	6.5	6.5
RE (%)	3.7	6.4	5.3	3.8	1.8
TE (%)	13.1	15.0	14.3	10.3	8.2
N	6	6	6	6	6

Acceptance Criteria
- ≤ 20%
- ± 20% and ± 25% LLOQ & ULOQ
- ≤ 30% and ≤ 40% LLOQ & ULOQ

SD - Standard Deviation
CV - Coefficient of Variation
RE - Relative Error
TE - Total Error
Stability Investigations

- **Stability QC levels**
 - Low QC (2.5 ng/mL)
 - High QC (12 ng/mL)

- **Acceptance criteria**
 - CV ≤ 20%
 - RE ± 20% nominal value or T0 value if appropriate

- Room temperature for 24h and 48h
- At +5°C for 24h and 48h
- After 3 F/T cycles at -70°C
- Frozen (-70°C and -20°C) from T1M to T24M
Concluding remarks

Flow cytometry-based assay

- High sensitivity
- Related to Ig binding to target cells
- « Easily » transferable
- Validation: Regulatory compliant method
- High throughput clinical sample testing
- Useful tool for pharmacokinetic studies

Good alternative to ELISA

Used during all clinical phases
Special thanks to...

- Bruno PICOT
 Cell Biology Lab Senior Technician
 Department of Non-Clinical Study
 LFB-BIOTECHNOLOGIES