Co-culture spheroids for phenotypic preclinical assessment of direct drug delivery to paediatric brain tumours

Delyan Ivanov
Medulloblastoma

Most common malignant brain tumour in childhood

Therapy – surgery, radiation & systemic chemo; survival 75%

Radiotherapy lowers IQ, causes growth and endocrine problems

Difficulties with education, independence, employment, driving, dating

Drug-loaded nanoparticles
Residual Tumour tissue
Gel/foam carrier formulation
Safety and efficacy in brain cancer therapy

Safety
- Neural progenitor cells
- Human fetal brain tissue
- Proliferating part of brain

Efficacy
- UW228 Tumour cells:
 - Human medulloblastoma
 - Invading cancer cells
Co-culture models

- Mimics interaction between normal and tumour tissue
- Cells marked with supravital stains (CDCFDA SE, CellTrace)
- Maintains tissue heterogeneity
Experimental setup

Seed marked cell mix
- Green: normal
- Blue: tumour

Etoposide
- Co-culture ready for compound screening

Fresh media
- Early drug effects

Analyse
- Late drug effects

Days in culture:
- Growth: 0-1
- Drug treatment: 3
- Drug-free phase: 5-7
Co-culture analysis

- Co-culture + Etoposide → Drug effect

Intact spheroid microscopy

- Flow cytometry

One-Photon Fluorescence

- Excited State $E=E_1 - E_0 = hf$
- Excitation Photon $E = hf/2$
- Fluorescence Photon
- Ground State $E=E_0$

Two-Photon Fluorescence

- Excited State $E=E_1 - E_0 = hf$
- Excitation Photon $E = hf/2$
- Fluorescence Photon
Flow cytometry analysis

Dissociation

Co-culture

Tumours

Normal cells
Dose response curve computation

Viability %

Etoposide, μM

IC50

Control 0.01 0.1 1 10 100 1000

NSC UW 228-3

10μM Etoposide

Viability %

NSC UW 228

IC50 3 1
Conclusions

Supravital dyes can be used to mark heterogeneous mixes of cells
Protocol is HT compatible and universally applicable
Model is uniquely suited to study tumour/stroma interactions
Internal normal tissue control puts drug effects in perspective

Acknowledgements

Martin Garnett
Cameron Alexander
David Walker
Marianne Ashford
Paul Gellert
Terry Parker

CBTRC
Beth Coyle
David Onion
Tim Self – Cell signaling
Chris Power- Zeiss